
MODELS OF COMPUTATION AND
MODELING LANGUAGES

1. System Specification

2. System Modeling and Formal Models

3. Models of Computation: What’s that?

4. Concurrency

5. Communication & Synchronisation

6. Common Models of Computation

1 of 38

2 of 38

From Specifications to Implementations

n Specification: A description of basic requirements and properties of a system

r The designer gets a specification as an input and, finally, has to
produce an implementation.
This is usually done as a sequence of refinement steps.

r Specifications can be:

- informal (natural language)
- more detailed and unambiguous (based on a formal notation)

3 of 38

System Specifications

n A specification captures:

r The basic required behaviour of the system

- E.g. as a relation between inputs and outputs

r Other (non-functional) requirements

- time constraints

- power/energy constraints

- safety requirements

- environmental aspects

- cost, weight, etc.

4 of 38

System Model
n As an early step in the design flow, a system model is produced (you

remember the design flow!).

n The model is a description of certain aspects/properties of the system.
Models are abstract, in the sense that they omit details and concentrate on
aspects that are significant for the design process.

System Model
n As an early step in the design flow, a system model is produced (you

remember the design flow!).

n The model is a description of certain aspects/properties of the system.
Models are abstract, in the sense that they omit details and concentrate on
aspects that are significant for the design process.

T1

T3

5 of 38

T5 T6

T4

T7

T8

T2
You remember our
task graph example!

6 of 38

System Model

n Models are formulated using modeling languages

n Modeling language:
r well-suited to expressing the basic system properties and basic aspects

of system behaviour in a succinct and clear manner
r lends itself well to the, preferably automatic, checking of requirements

and synthesis of implementations.

n Depending on the particularities of the system, an adequate modeling
language has to be chosen.
The language has to contain the appropriate language constructs in order to
express the system’s functionality and requirements.

7 of 38

System Model

n Modeling Languages can be
r graphical
r textual

n Modeling languages can be
r “ordinary” programming languages (C, C++)
r hardware description languages (VHDL, Verilog)
r languages specialised for modeling of systems in particular areas, and

with particular features;
they are often based on particular models of computation.

8 of 38

System Model

What do we want to do with the model of an embedded system?

9 of 38

System Model

What do we want to do with the model of an embedded system?

1. To validate the system description in order to check that the specified
functionality is the desired one and the requirements are stated correctly:
- by formal verification
- by simulation

2. To synthesise efficient implementations

10 of 38

Semantics of System Models

We would like modeling languages to have well defined semantics Þ models are
unambiguous.

r The semantics is the set of rules which associate a meaning to
syntactical constructs (combination of symbols) of the language.

r The semantics of the language is based on the underlying model of
computation.

It depends on this underlying model of computation what kind of sys-
tems can be described with the language.

The model of computation decides on the expressiveness of the
language.

11 of 38

Semantics of System Models

Do we want large expressiveness (we can describe anything we want)?
Not exactly!

n Large expressive power: imperative model (e.g. unrestricted use of C or Java):

r Can specify “anything”.
r No formal reasoning possible (or extremely complex).

n Limited expressive power, based on well chosen computation model:

r Only particular systems can be specified.
r Formal reasoning is possible.
r Efficient (possibly automatic) synthesis.

12 of 38

process P1
{

send m to P2;
................. }

process P2
{

receive m from P1;
................. }

Language L1

process P1
{

send m to P2;
................. }

process P2
{

receive m from P1;
................. }

Synchronous:
send and receive blocking;
P1 and P2 are waiting for each
other to handshake and hand
over the message:
- No buffering needed.
- P1 and P2 run at the same

rate in lockstep.

Language L1

13 of 38

process P1
{

send m to P2;
................. }

process P2
{

receive m from P1;
................. }

module P1
{

m!P2;
................. }

module P2
{

m?P1;
................. }

Synchronous:
send and receive blocking;
P1 and P2 are waiting for each
other to handshake and hand
over the message:
- No buffering needed.
- P1 and P2 run at the same

rate in lockstep.

Language L1 Language L2

14 of 38

process P1
{

send m to P2;
................. }

process P2
{

receive m from P1;
................. }

module P1
{

m!P2;
................. }

module P2
{

m?P1;
................. }

Synchronous:
send and receive blocking;
P1 and P2 are waiting for each
other to handshake and hand
over the message:
- No buffering needed.
- P1 and P2 run at the same

rate in lockstep.

Language L1 Language L2

15 of 38

process P1
{

send m to P2;
................. }

process P2
{

receive m from P1;
................. }

module P1
{

m!P2;
................. }

module P2
{

m?P1;
................. }

Synchronous:
send and receive blocking;
P1 and P2 are waiting for each
other to handshake and hand
over the message:
- No buffering needed.
- P1 and P2 run at the same

rate in lockstep.

process P1
{

send m to P2;
................. }

process P2
{

receive m from P1;
................. }

Language L1 Language L2

16 of 38

Language L3

process P1
{

send m to P2;
................. }

process P2
{

receive m from P1;
................. }

module P1
{

m!P2;
................. }

module P2
{

m?P1;
................. }

Synchronous:
send and receive blocking;
P1 and P2 are waiting for each
other to handshake and hand
over the message:
- No buffering needed.
- P1 and P2 run at the same

rate in lockstep.

process P1
{

send m to P2;
................. }

process P2

Asynchronous:
receive blocking but send not;
P1 and P2 are not waiting for
each other; P2 only waits if
there is no message available:
- Buffering is needed!
- P1 and P2 can run at different

Language L1 Language L2

rate.{
receive m from P1;
................. }

17 of 38

Language L3

process P1
{

send m to P2;
................. }

process P2
{

receive m from P1;
................. }

module P1
{

m!P2;
................. }

module P2
{

m?P1;
................. }

Synchronous:
send and receive blocking;
P1 and P2 are waiting for each
other to handshake and hand
over the message:
- No buffering needed.
- P1 and P2 run at the same

rate in lockstep.

process P1
{

send m to P2;
................. }

process P2
{

receive m from P1;
................. }

module P1
{

m!P2;
................. }

module P2
{

m?P1;
................. }

Asynchronous:
receive blocking but send not;
P1 and P2 are not waiting for
each other; P2 only waits if
there is no message available:
- Buffering is needed!
- P1 and P2 can run at different

rate.

Language L1 Language L2

18 of 38

Language L3 Language L4

process P1
{

send m to P2;
................. }

process P2
{

receive m from P1;
................. }

module P1
{

m!P2;
................. }

module P2
{

m?P1;
................. }

Synchronous:
send and receive blocking;
P1 and P2 are waiting for each
other to handshake and hand
over the message:
- No buffering needed.
- P1 and P2 run at the same

rate in lockstep.

process P1
{

send m to P2;
................. }

process P2
{

receive m from P1;
................. }

module P1
{

m!P2;
................. }

module P2
{

m?P1;
................. }

Asynchronous:
receive blocking but send not;
P1 and P2 are not waiting for
each other; P2 only waits if
there is no message available:
- Buffering is needed!
- P1 and P2 can run at different

rate.

Language L1 Language L2

19 of 38

Language L3 Language L4

Models of Computation
The model of computation deals with the set of theoretical choices that build the
execution model of the language.

n A design is represented as a set of components,
which can be considered as isolated monolithic
modules (often called processes or tasks),
interacting with each other and with the environment.

The model of computation defines the behavior and
interaction mechanisms of these modules.

20 of 38

Models of Computation
The model of computation deals with the set of theoretical choices that build the
execution model of the language.

n Models of computation usually refer to:
r how each module (process or task) performs

internal computation
r how they transfer information between them
r how they relate in terms of concurrency

21 of 38

Models of Computation
The model of computation deals with the set of theoretical choices that build the
execution model of the language.

n Models of computation usually refer to:
r how each module (process or task) performs

internal computation
r how they transfer information between them
r how they relate in terms of concurrency

n Some models of computation do not refer to aspects
related to the internal computation of the modules,
but only to module interaction and concurrency.

n The main aspects we are interested in:

22 of 38

r

r

r

r Concurrency
Communication&Synchronization
Time
Hierarchy

23 of 38

Concurrency

n A system consists of several activities (processes or tasks) which potentially
can be executed in parallel. Such activities are called concurrent.

How to express concurrency?
r This is one aspect in which models of computation differ!
- Data-driven concurrency
- Control-driven concurrency

Data-driven Concurrency

The system is modelled as a set of processes without any explicit specification
of the ordering of executions.

The execution order of processes (and, implicitly, the potential of parallelism) is
fixed solely by data dependencies

n Appropriate e.g. for many DSP applications

24 of 38

Data-driven Concurrency

p3

25 of 38

I

p1

p4
O

C1 C2

p2

C3 C4

Data-driven Concurrency

Process p1(in int a, out int x, out int y) {...............
}

Process p2(in int a, out int x) {...............
}

Process p3(in int a, out int x) {...............
}

Process p4(in int a, in int b, out int x) {...............
}

channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p3(C2, C4);
p4(C3, C4, O);

p3

I

p1

p4
O

C1 C2

p2

C3 C4

It doesn’t matter
in which order I
have written this.

26 of 38

27 of 38

Control-driven Concurrency

n The execution order of processes is
given explicitly in the system model.

n Explicit constructs are used to specify
sequential execution and concurrency.

Control-driven Concurrency

module p1:..........
end module

module p2:..........
end module

module p3:..........
end module

module p4:..........
end module

run p1;
[run p2 || run p3];
run p4

n The execution order of processes is
given explicitly in the system model.

n Explicit constructs are used to specify
sequential execution and concurrency.

Here, the order in
which we write is
essential!

28 of 38

29 of 38

Communication

n Processes have to communicate in order to exchange information.

Various communication mechanisms are used in different computation models:

r shared memory

r message passing
- blocking
- non-blocking

Shared Memory Communication

n Each sending process writes to shared variables which can be read by a
receiving process.

process p1{
int a;........
X = a+1;
........
}

process p2{
int b;........
b = X;
........
}

int X;
shared memory

30 of 38

Private variables:
- a: local to p1
- b: local to p2

Shared variable:
- X

Message-passing Communication

n Data (messages) are passed over an abstract communication medium called
channel.

n This communication model is adequate for modeling of distributed systems.

process p1{
int a;........
C.send(a+1);
........
}

process p2{
int b;........
b = C.receive();
........
}

Abstract channel C

31 of 38

Message-passing Communication

n Blocking communication

A process which communicates over the channel blocks itself (suspends)
until the other process is ready for the data transfer.

The two processes have to synchronize before data transfer can be initiated.

32 of 38

Message-passing Communication

n Non-blocking communication

Processes do not have to synchronize for communication!

Additional storage (buffer) has to be associated with the channel if no
messages are to be lost!

r The sending process places the message into the buffer and continues
execution.

The receiving process reads the message from the channel whenever it
is ready to do it.

33 of 38

34 of 38

Synchronization

n Synchronization cannot be separated from communication.
Any interaction between processes implies a certain degree of
communication and synchronization.

n Synchronization:One process is suspended until another one reaches a
certain point in its execution.

r Control-dependent synchronization

r Data-dependent synchronization

35 of 38

Control-dependent Synchronization: Example

module p1:..........
end module

module p2:..........
end module

module p3:..........
end module

module p4:..........
end module

run p1;
[run p2 || run p3];
run p4

n With control-dependent synchronization the con-
trol structure is responsible for synchronization

n In the example we have several synchronization
points specified:

r between completion of p1 and starting of p2
and p3;

r between completion of p2 and p3, and
starting of p4.

Data-dependent Synchronization: Example

........
X =;
........
}

process p1{ process p2{........
wait until X=...;
........
}

int X;

process p3{........
wait until X is modified;
........
}

36 of 38

37 of 38

And don’t forget: Time!

n How is time handled?

This makes a great difference between models of computation!

38 of 38

Common Models of Computation

In this course, we will analyze some of the models of computation
commonly used to describe embedded systems:

r Dataflow Models

r Petri Nets

r Discrete Event

r (Synchronous) Finite State Machines

r Globally Asynchronous Locally Synchronous Models

r Timed & Hybrid Automata

